INCH-POUNDS MIL-DTL-4946C <u>5 May 2003</u> SUPERSEDING MIL-A-4946B 18 March 1965 ### **DETAIL SPECIFICATION** # ANTENNA ASSEMBLY AT-197()/GR This specification is approved for use by all Departments and Agencies of the Department of Defense. ### 1. SCOPE - 1.1 <u>Scope</u>. This specification covers the requirements for one type of discone antenna assembly, designed to operate at an impedance of 50 ohms, within the frequency range of 225 through 500 megahertz (MHz)(see 6.1). - 1.2 Classification. - 1.2.1 <u>Type designation (see 6.2)</u>. The type designation of the antenna is derived from the Joint Electronic Type Designation System specified in MIL-STD-196. ### 2. APPLICABLE DOCUMENTS - 2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements documents cited in sections 3 and 4 of this specification whether or not they are listed. - 2.2 Government documents. - 2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation (see 6.2). ### **SPECIFICATIONS** # DEPARTMENT OF DEFENSE MIL-C-17/79 - Cables, Radio Frequency Flexible, Coaxial, 50 Ohms Unarmored M17/79-RG218, and Armored M17/79-RG-219. Beneficial comments (recommendations, additions, deletions) and pertinent data for improving this document should be addressed to: Defense Supply Center Columbus, Attn: DSCC-VAT, P.O. Box 3990, Columbus, OH 43216-5000, using Standardization Document Improvement Proposal (DD Form 1426) at the end of this document or by letter. AMSC N/A FSC 5985 MIL-C-3643 - Connectors, Coaxial, Radio Frequency, Series HN, and Associated Fittings, General Specification for. MIL-F-14072 - Finishes for Ground Based Electronic Equipment. ### **STANDARDS** # **FEDERAL** FED-STD-595 - Colors, Used in Government Procurement. ### DEPARTMENT OF DEFENSE MIL-STD-130 - Identification Marking of U.S. Military Property. MIL-STD-202 - Test Methods for Electronic and Electrical Component Parts. MIL-STD-810 - Environmental Engineering Considerations and Laboratory Tests. # **DRAWINGS** # AIR FORCE 64C3418 - Antenna Assembly, AT-197()/GR, Discone. 64C3419 - Antenna Mounting. (Unless otherwise indicated, copies of the above specifications, standards, and handbooks are available from the Document Automation and Production Service, Bulding 4D (DPM-DODSSP), 700 Robbins Avenue, Philadelphia, PA 19111-5094.) 2.3 <u>Non-Government publications</u>. The following document forms a part of this specification to the extent specified herein. Unless otherwise specified, the issues of the documents that are DoD adopted are those listed in the issue of the DoDISS cited in the solicitation. Unless otherwise specified, the issues of documents not listed in the DoDISS are the issues of the documents cited in the solicitation (see 6.2). Unless otherwise indicated, the issue in effect on date of invitation for bids or request for proposal shall apply. # OFFICIAL CLASSIFICATION COMMITTEE Uniform Freight Classification Rules. (Application for copies should be addressed to the Official Classification Committee, One Park Avenue at 33rd Street, New York, New York 10016.) ### 3. REQUIREMENTS - 3.1 <u>Preproduction</u>. The antenna furnished under this specification shall be a product that has been tested, and passed the preproduction tests specified in 4.4. - 3.2 <u>General service requirements</u>. General service requirements shall conform to best manufacturing practice. Exceptions and additions shall be as follows: - 3.2.1 <u>Ambient temperature</u>. The antenna shall be designed to operate over a temperature range of -54°C (-65°F) to $+71^{\circ}\text{C}$ ($+160^{\circ}\text{F}$). - 3.2.2 Relative humidity. The antenna shall be capable of operation up to a relative humidity of 95 percent between the temperature of 20°C (68°F) and 71°C (160°F) (see 4.6.4.5). - 3.2.3 <u>Service conditions (electrical)</u>. The electrical service condition requirements for the antenna shall be as specified herein (see 4.6.2). - 3.2.4 <u>Service life</u>. The antenna shall be designed and constructed for continuous operation with a life expectancy of 5 years. - 3.3 <u>Material</u>. The material for the antenna shall be of a type that will permit the antenna to meet the performance and environmental requirements of this specification. - 3.4 <u>Design and construction</u>. The antenna shall have the design, construction, and physical dimensions specified in AF Drawing 64C3418. - 3.4.1 Polarization. The antenna shall be designed for vertical polarization. - 3.4.2 <u>Antenna mounting</u>. The antenna mounting shall be as specified in AF Drawing 64C3419 for mounting to antenna mast AB-158/GR. - 3.4.3 <u>Input connector</u>. The input connector shall be of HN female series and shall have mating dimensions as specified in MIL-C-3643. - 3.4.4 <u>Cable</u>. The cable from the input connector to the radiating elements shall be RG-17A/U in accordance with MIL-C-17/79. - 3.4.5 Weight. The total weight of the antenna shall not exceed 15 pounds. - 3.4.6 <u>Finishing</u>. Before painting, the antenna shall be given a protective finish in accordance with the requirements of MIL-F-14072. - 3.4.7 <u>Color</u>. The color of the paint finish applied to the antenna, shall be number 24087 in accordance with FED-STD-595 (see 4.6.1). - 3.5 Performance. - 3.5.1 <u>Gain</u>. The gain from 225 through 400 MHz, shall not be less than 0.3 decibels (db) over that obtained from a half-wave dipole, tuned to maximum efficiency (see 4.6.3.1). - 3.5.2 <u>Voltage standing wave ratio (VSWR)</u>. The VSWR over the entire frequency range shall not exceed 2 to 1 with respect to 50 ohms (see 4.6.3.2). - 3.5.3 Impedance. Normal impedance of the antenna shall be 50 ohms (see 4.6.3.3). - 3.5.4 <u>Radiation pattern</u>. The horizontal radiation pattern shall be omnidirectional and shall not vary from circular by more than 0.5 db (see 4.6.3.4). - 3.5.5 <u>Frequency range</u>. The antenna shall be capable of satisfactory operation without hiatus at any frequency throughout the 225 through 400 MHz range. Mechanical tuning to operate the antenna at any specified frequency in this range, after initial manufacturing or factory adjustments, shall not be required (see 4.6.3.5). - 3.5.6 <u>Power capability</u>. The antenna shall be capable of satisfactory operation with a radio-frequency (RF) carrier input of 1 kilowatt, amplitude modulated 100 percent by a 1,000 cycle per second signal (see 4.6.3.6). - 3.5.7 Environmental. The antenna shall successfully pass all environmental tests listed in 4.6.4. - 3.5.8 <u>Marking</u>. The antenna shall be marked in accordance with MIL-STD-130 with the type designation and manufacturer's name, on a nameplate fastened to the antenna tube. - 3.5.9 Recycled, recovered, or environmentally preferable materials. Recycled, recovered, or environmentally preferable materials should be used to the maximum extent possible provided that the material meets or exceeds the operational and maintenance requirements, and promotes economically advantageous life cycle costs. - 3.5.10 <u>Workmanship</u>. Antennas shall be processed in such a manner as to be uniform in quality and all surfaces shall be free of burrs, die marks, chatter marks, scratches, dirt, grease, scale, splinters, and other defects that will affect life, serviceability or appearance. # 4. VERIFICATION - 4.1 <u>Test equipment and inspection facilities</u>. Test equipment and inspection facilities shall be of sufficient accuracy, quality and quantity to permit performance of the required inspection. The supplier shall establish calibration of inspection equipment to the satisfaction of the Government. - 4.2 <u>Classification of inspection</u>. The examination and testing of the antennas shall be classified as follows: - (a) Preproduction inspection (see 4.4). - (b) Conformance inspection (see 4.5). Inspection of product for delivery (see 4.5.1). - 4.3 <u>Inspection conditions</u>. Except where specified herein, all inspections shall be made at room ambient temperature, relative humidity, and pressure as specified in MIL-STD-202. - 4.3.1 Order of tests. The tests shall be run in the order shown in Table I. - 4.4 <u>Preproduction inspection</u>. Preproduction inspection shall be performed by the supplier after award of contract and prior to production, at a location designated by the Government (see 6.2). - 4.4.1 Sample. Three antenna shall be submitted for preproduction inspection. - 4.4.2 <u>Test routine</u>. Sample units shall be subjected to group of examinations and tests listed in Table I for that individual antenna. TABLE I. <u>Preproduction Inspection</u>. | Examination or Test | Requirement | Method | |-----------------------------|-------------------------|--------------| | | Paragraph | Paragraph | | Antennas 1, 2 and 3 | | | | Visual and Mechanical | 3.3, 3.4 to 3.4.7 incl. | 4.6.1 | | | 3.7, and 3.8 | | | Electrical | 3.2.3 | 4.6.2 | | Performance | 3.5 to 3.5.6 incl. | 4.6.3 to | | | | 4.6.3.6 incl | | Antenna 1 | | | | Rain | 3.6 | 4.6.4.9 | | Salt fog | 3.6 | 4.6.4.8 | | Wind | 3.6 | 4.6.4.10.1 | | Ice | 3.6 | 4.6.4.10.2 | | | | | | Antenna 2 | | | | Fungus | 3.6 | 4.6.4.1 | | Sand and Dust | 3.6 | 4.6.4.2 | | Low Pressure | 3.6 | 4.6.4.6 | | Vibration | 3.6 | 4.6.4.7 | | Operating dynamic vibration | 3.6 | 4.6.4.11 | | | | | | Antenna 3 | | | | High temperature | 3.6 | 4.6.4.3 | | Low Temperature | 3.6 | 4.6.4.4 | | Humidity | 3.6 | 4.6.4.5 | | Vibration | 3.6 | 4.6.4.7 | | Operating dynamic vibration | 3.6 | 4.6.4.11 | - 4.4.3 <u>Failures</u>. Failure in any of the examinations or tests will be cause for refusal to grant approval of the antennas represented by the samples. - 4.5 Conformance inspection. - 4.5.1 <u>Inspection of product for delivery</u>. Inspection of product for delivery shall consist of groups A, B and C. - 4.5.1.1 <u>Inspection lot</u>. An inspection lot, as far as practicable, shall consist of all the antennas produced under essentially the same conditions and offered for delivery at one time. 4.5.1.2 <u>Group A inspection</u>. Group A inspection shall consist of the examinations and tests specified in Table II and each antenna offered on the contract or order shall be subjected to these tests. TABLE II. Group A Inspection. | Examination or test | Requirement | Method | |-----------------------|-------------------------|-----------| | | Paragraph | Paragraph | | Visual and mechanical | 3.3, 3.4 to 3.4.7 incl, | 4.6.1 | | | 3.7, and 3.8 | | | Electrical | 3.2.3 | 4.6.2 | | VSWR | 3.5.2 | 4.6.3.2 | - 4.5.1.2.1 <u>Disposition of items</u>. Items which have passed the Group A inspection shall be subjected to the Group B inspection. Items which do not pass the Group A inspection shall not be acceptable on the contract or order. - 4.5.1.3 Group B inspection. Group B inspection shall consist of the tests specified in Table III. TABLE III. Group B inspection. | Examination | Requirement | Method | |-------------|--------------------|------------------------| | or Test | Paragraph | Paragraph | | Performance | 3.5 to 3.5.5 Incl. | 4.6.3 to 4.6.3.5 Incl. | 4.5.1.3.1 <u>Sampling plan</u>. Statistical sampling and inspection shall be performed on an inspection lot basis with a random sample of units selected in accordance with TABLE IV. The acceptance levels shall be based upon the zero defective sampling plan. No failures shall be permitted. Table IV. Group B Sampling Plan. | Lot size | Sample size | | |-------------|-------------|--| | 1-13 | 100 percent | | | 14-150 | 13 | | | 151-280 | 20 | | | 281-500 | 29 | | | 501-1200 | 34 | | | 1201-3200 | 42 | | | 3201-10,000 | 50 | | - 4.5.1.4 <u>Group C inspection</u>. Group C inspection shall consist of the power test (see 4.6.3.6), vibration (see 4.6.4.7) and rain (see 4.6.4.9) and shall be conducted on one antenna out of each lot of 200 or fraction thereof produced on the contract or order, except that the first samples selected shall be from the first units produced. - 4.6 Methods of examination and test. - 4.6.1 <u>Visual and mechanical examination</u>. The antenna shall be examined to verify that the design, construction, physical dimensions, weight, finishing, color, input connector, marking, and workmanship are in accordance with the applicable requirements (see 3.3, 3.4 to 3.4.7 inclusive, 3.7, and 3.8). - 4.6.2 <u>Electrical test</u>. Each electrical component shall be given a continuity test to ascertain that it is wired and connected correctly and that good electrical contact is obtained (see 3.2.3). ## 4.6.3 Performance. - 4.6.3.1 <u>Gain</u>. The gain of the antenna shall be computed by the comparison of a received signal strength from the test antenna to the received signal strength from a standard half-wave dipole antenna. Measurements shall be made with appropriate test equipment at 225, 310, and 400 MHz (see 3.5.1). - 4.6.3.2 <u>VSWR</u>. The VSWR of the antenna shall be determined by the slotted line method, UHF bridge method, or a method approved by the contracting agency. Measurements shall be made at both extreme frequencies and at least three other evenly spaced frequencies within the operating frequency range. The values shall not exceed that specified (see 3.5.2). - 4.6.3.3 <u>Impedance</u>. The impedance of the antenna shall be measured by one of the methods for measuring VSWR (see 3.5.3). - 4.6.3.4 <u>Radiation pattern</u>. The radiation pattern shall be determined by the use of a "field-strength" or pattern measuring system, or other method acceptable to the procuring agency (see 3.5.4). - 4.6.3.5 <u>Frequency range</u>. The frequency range requirements shall have been met if the antenna meets the requirements for gain, VSWR and power capability at the frequencies specified (see 3.5.5). - 4.6.3.6 <u>Power capability</u>. Maximum power shall be applied to the antenna for a period of 2 minutes from a transmitter designed to operate with such an antenna, without malfunction of, or damage to, the antenna (see 3.5.6). The continuity and VSWR shall then be checked in accordance with 4.6.2 and 4.6.3.2. - 4.6.4 <u>Environmental tests</u>. The antenna shall be subjected to the following environmental conditions in accordance with MIL-STD-810, with the following exceptions, without deterioration of quality or performance (see 3.6). After each environmental test, the continuity and VSWR shall be checked in accordance with 4.6.2 and 4.6.3.2. - 4.6.4.1 <u>Fungus</u>. The antenna shall be subjected to the fungus test in accordance with method 508, procedure I. A certified statement by the contractor that all materials are non-nutrient will be acceptable in lieu of this test. - 4.6.4.2 <u>Sand and dust</u>. The antenna shall be subjected to the sand and dust test in accordance with method 510, procedure I. - 4.6.4.3 <u>High temperature</u>. The antenna shall be subjected to the high temperature test in accordance with method 501, procedure I, except the temperature shall be held at 71°C (160°F) for 4 hours and then at 52°C (126°F) for 20 hours in lieu of 48 hours at 71°C (160°F). - 4.6.4.4 <u>Low temperature</u>. The antenna shall be subjected to the low temperature test in accordance with method 502, procedure I. - 4.6.4.5 <u>Humidity</u>. The antenna shall be subjected to the low temperature test in accordance with method 507, procedure I. - 4.6.4.6 <u>Low pressure</u>. The antenna shall be subjected to the low pressure test in accordance with method 500, procedure I. - 4.6.4.7 <u>Vibration</u>. The antenna shall be subjected to the vibration test in accordance with method 514, procedure I. - 4.6.4.8 <u>Salt fog.</u> The antenna shall be subjected to the salt fog test in accordance with method 509, procedure I. After exposure, the salt deposits shall be removed by a gentle wash or a dip in running water not warmer than 38°C (100°F) and a light brushing. The antenna shall then be inspected. - 4.6.4.9 <u>Rain</u>. A simulated rainfall equivalent to 4 inches per hour shall be applied to the antenna under the following conditions and in the order specified. - (a) The antenna shall be erected in its normal operating position with the antenna nonoperating. - (b) The first hour the rainfall shall be vertical; the second hour the rainfall shall be 45 degrees to the perpendicular, 15 minutes to a side. - (c) With the simulated rainfall still applied, 1.0 kilowatts of RF power, within the operating frequency range of the antenna, 100 percent amplitude modulated, shall be applied for 2 minutes. 1132 volts, 60 Hz with one ampere available may be used instead of 1 kW RF. - (d) A simulated rainfall shall then be 90 degrees to the perpendicular for 1 hour, 15 minutes to a side, then back to the vertical for 1 hour and the power test repeated. The performance of the antenna shall not be below the minimum specified in section 3. # 4.6.4.10 Loading tests. - 4.6.4.10.1 <u>Wind</u>. The antenna, with its normal method of mounting, shall be subjected to direct or simulated loading of wind at 100 miles per hour (mph) for a period of 1hour. The antenna shall then be examined and shall show no damage. - 4.6.4.10.2 <u>Ice</u>. The antenna shall be loaded with 1 inch of radial ice and subjected to a 60 mph wind for 1 hour. The antenna shall be checked for performance during the test. - 4.6.4.11 Operating dynamic vibration. The antenna shall be subjected to operating dynamic vibration tests across the 225 MHz to 400 MHz band. With the transmitter at one frequency and the receiver tuned to different frequencies within the band, the antenna shall be shaken such that the total excursion of any part of the antenna shall not be less than 2 inches. When vibrated, the antenna shall not generate or force the transmitter to generate spurious radiation. The purpose of this test is to dynamically simulate wind vibrations as occur under operational environments. # 5. PACKAGING 5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department or Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity. # 6. NOTES - 6.1 <u>Intended use</u>. The antenna AT-197()/GR covered by this specification is intended for use as an antenna for a ground radio transmitter and receiver such as the AN/GRC-27, AN/GRC-29 and AN/TRC-32 for communication with aircraft equipped with UHF command radio sets and such ground UHF stations as necessary in the UHF terminal area. - 6.2 Ordering data. Procurement documents should specify the following: - (a) Title, number and date of this specification. - (b) The complete type designation (see 1.2.1). - (c) Packaging requirements (see 5.1). - (d) Location where preproduction inspection is to be performed (see 4.4). - (e) Issue of DoDISS to be cited in the solicitation, and if required, the specific issue of individual documents referenced (see 2.1.1). - 6.3 Environmentally preferable material. Environmentally preferable materials should be used to the maximum extent possible to meet the requirements of this specification. Table V lists the Environmental Protection Agency (EPA) top seventeen hazardous materials targeted for major usage reduction. Use of these materials should be minimized or eliminated unless needed to meet the requirements specified herein (see Section 3). Table V. EPA top seventeen hazardous materials. | Benzene | Dichloromethane | Tetrachloroethylene | |------------------------|------------------------|-------------------------| | Cadmium and Compounds | Lead and Compounds | Toluene | | Carbon Tetrachloride | Mercury and Compounds | 1,1,1 - Trichloroethane | | Chloroform | Methyl Ethyl Ketone | Trichloroethylene | | Chromium and Compounds | Methyl Isobutyl Ketone | Xylenes | | Cyanide and Compounds | Nickel and Compounds | | # 6.4 Subject term (key word) listing. Discone Gain HN connector Ice Loading Omnidirectional Polarization Preproduction inspection Radiation Radio Service life **UHF** **VSWR** Wind Custodians: Army - CR Air Force - 11 DLA - CC Preparing Activity: DLA - CC (Project 5985-1262) Review Activities: Air Force - 99 # STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL ### **INSTRUCTIONS** - 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given. - 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity. 3. The preparing activity must provide a reply within 30 days from receipt of the form. NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements. I RECOMMEND A CHANGE: 1. DOCUMENT NUMBER 2. DOCUMENT DATE (YYMMDD) MIL-DTL-4946C 030505 3. DOCUMENT TITLE ANTENNA ASSEMBLY AT-197()/GR 4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.) 5. REASON FOR RECOMMENDATION 6. SUBMITTER a. NAME (Last, First, Middle initial) b. ORGANIZATION c. ADDRESS (Include Zip Code) d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (1) Commercial (YYMMDD) (2)DSN (if applicable) 8. PREPARING ACTIVITY b. TELEPHONE (Include Area Code) a. NAME (1) Commercial DSCC-VAT (2) DSN 614-692-0506 850-0506 c. ADDRESS (Include Zip Code) IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: Defense Supply Center Columbus Defense Standardization Program Office (DLSC-LM) P.O. Box 3990 8725 John J. Kingman Road, Suite 2533 Fort Belvoir, Virginia 22060-6221 Columbus, OH 43216-5000 Telephone (703) 767-6888 DSN 427-6888 DD FORM 1426, FEB 1999 (EG) PREVIOUS EDITIONS ARE OBSOLETE WHS/DIOR, Feb 99